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Objectives

= Develop a set of tools useful throughout the course
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1.1 Linear Systems

= Consider a simple system: //

= Equation of motion: K Mass
m _> ona
d’x dx ) spring
m +ym—+ Mo "X = f(t 1.1
pres AL A (t) (1.1) :
a, = a
= Define Operator: (linear differential eqs)
d d
L=m—+ym—+ma.° (1.2)
a dt e
2| L(x)=F(t) (1.3)
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1.1 Linear Systems

= Operator L has important properties:

d{ax) d(ax)

a) L(ax)=m e Hym=_ =+ M.’ (ax) =
= a{m dd(t)s) + 7%% + ma)oz(x)} =
=aL(x) (1.4)
b) L(x+y) = md(xdr ) 4 m d(xd': Y) 4 mo(x+ y) =
=L(x)+ L(y) (1.5)
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1.1 Linear Systems

= Definition: An operator obeying properties L(ax) = aL(x) and
L(x+y)=L(x)+L(y) is called linear

= Most of the system in nature are linear; well, at least to the
first approximation

» They are mathematically tractable = analytic solutions

= Consider equations:

Lix,) =0 (1.6)
L(x,) =0

—>X,, X, are solutions
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1.1 Linear Systems

= Continuing:
—2>L(ax + bx,) = L(ax,) + L(bx,)
= al(xq) + bL(x,)
= 0 + 0 (1.7)

= Any linear combination of solutions: x,, X, is also a
solution

= The number of independent solutions = degrees of freedom

KKy Ky = independent solutions if
X, ?&Zajxj , forany a, (1.8)
= Linear Differential ecrsI of order N allow for N independent
solutions
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1.2 Light-matter interaction

= Classic model of atom: e rotating around N = planets
X =X_cos(ayt)

N-___—’

- Lorentz Model

= Analogy : ///
J.—

_[ X=X cos(mt) — o = \ﬁ
° m
X
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1.2 Light-matter interaction

2> = So, motion of charge follows the same eq (1.1)

(:i:( + ym% + Mo, “x = F(t)

* Incident field drives the charge: F(t)=qE(t) (1.9)
" Fore, q=-e!

= Monochromatic field: E(t) = E e

> mK + ymx + ma,” = qE e (1.10)

m

= This is the eq of motion for eletric charge under incident EM
field. Can explain most of Optics!
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1.3 Superposition principle

= Suppose we have 2 fields simultaneously interacting with the
material (Eg. wy, w,):

/ E, E, =[B[e™" ;qE, =F,
/ E, = ‘Ez‘e—ia)zt;qEz _F,

E«1’. (1.11)

" Let x,, X, be solutions of displacements for the two forces F,
and F,

L{x,) = Fy(t) (1.12)
L(x,) = F,(t)
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1.3 Superposition principle

®» Consider the same solution:

L(X1 T Xz) — L(Xl) + L(Xz) (1.13)
=F(t) + F,(t)
= So, final solution is just the sum of individual solutions. Nice!

= This is the superposition principle

= For the 2 frequency example: \ /:} E

~
~
~ 1
~
~
~

" |t's as if one applies the fields one by one and sums their results
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1.4 Green’s function/impulse response

= Let the incident field, i.e driving field, have a complicated

shape
E(t) |

Al

N

t.
|

t

—> arbitrary

= E(t) can be broken down into a succession of short pulses, i.e

Dirac delta functions:

9 =
0, otherwise

> E@t) = T E(t)S(t—t)dt
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1.4 Green’s function/impulse response

= |f we know the response of the system to a short pulse, 6(t),
the problem is solved

" Let h(t) be the solution to §(t)
» The final solution for an arbitrary force F(t)=qE(t) is:

X(t)= [ E(t)h(t—t)dt 116

= This is the Green’s method of solving linear problems

h(t) = Green’s function or impulse response of the system
= Complicated problems become easily tractable!
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1.5 Fourier Transforms
= Very efficient tool for analyzing linear (and non-linear)

processes

= Definition: S[f (X)] _ T .|: (X)e—iZﬁfodX

=F(f,)=1($)
= Fisthe Fourier transform of f

" f:A—>A;AeC, f must satisfy:
a) H f| <o - modulus integrable

(1.17)

(X,Y,2) > (£,7,0)

b) f has finite number of discontinuities in the finite

domain A
c)f has no infinite discontinuities

* |n practice, some of these conditions are sometimes

relaxed
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1.5 Fourier Transforms

® |nverse Fourier Transforms:

33(£(x))]= [ F(&)e"df,

= f(x)
> J[3(f)]=f (1.19)

(1.18)

= Meaning of FT: reconstruct a complicated signal by summing
sinusoidals with proper weighting
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1.5 Fourier Transforms

= Fourier transform is a linear operator:

J[af (X) +bg(x)]=

~ [ [af (x) + bg (x)Je "**dx =

=a [ f(x)e"*™dx+b [ g(x)e™*dx
X —® (1.20)

=aJ[ T (x)]+bJ[g(x)]
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1.6 Basic Theorems with Fourier Transforms

a) Shift Theorem: if f (&) = J[f ()]

F{f(x—a)}=f(&)e 2™ (1.21)

= Easy to prove using definition

= Eqg 1.21 suggest that a shift in one domain corresponds to a
linear phase ramp in the other (Fourier) domain
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1.6 Basic Theorems with Fourier Transforms

b) Parseval’s theorem: if J[f (x)]= f (&)

T‘f(x)\zdx=7 ﬁ(?)‘zdff (1.22)

= Conservation of total energy
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1.6 Basic Theorems with Fourier Transforms

c) Similarity thgvorem: if
J[f(x)]=f(f) ,ie. f istheFToff

3 f (ax)] = é?(gj (1.23)

= Theorem 1.23 provides intuitive feeling for F.T
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1.6 Basic Theorems with Fourier Transforms

® Let’s consider:

f (X)A A ,.F(fx) A A
C\/
R)
Ax ) — Nfx
X fx
f(x) 4 F(F)t '
C\/
ZZA ‘\Sé
:\ Afx
2
y £
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1.6 Basic Theorems with Fourier Transforms

| Broader functions in one domain imply narrower functions in
the other and vice-versa

= Eg. To obtain short temporal pulses of light, one needs a broad
spectrum (Ti: Saph laser)

| Only an infinite spectrum allows foro -function pulses

s(w)] S I(®)
———

w t

> Physically Impossible
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1.6 Basic Theorems with Fourier Transforms

= Before we present the last theorems, we introduce the
definitions of convolution and correlation

" |et
g(x) =~ G(&)
h(x) —S_ H(E)
= Convolution of g and h:

g®h= _[ g(xl)h(x — Xl)dxl (1.24)
= Correlation of g and h

g®h= [ g(x)h(x —x)dx (1.25)
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1.6 Basic Theorems with Fourier Transforms

= Difference between® and @ is h(x-x’) vs h(x’-x), i.e. flip vs
non-flip of h

= Particular case:
= Autocorrelation: g=h

g®g={g(x)g(x —x)dx (1.26)

= Exercise: Use PC to show:

) o=\

o ) =ann

Gauss @Gauss = Gauss
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1.6 Basic Theorems with Fourier Transforms

d) Convolution theorem:

3[g @h]=GH 127

e L[ 90)N(x=X)dX = G(&H (&)

= Convolution in one domain corresponds to a product in the
other. Nice!

= Multiplication is always easy to do

= Recall Green’s function: h(t) = the response to a o-function
light pulse
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1.6 Basic Theorems with Fourier Transforms

= We found (Eq 1.16):
X(t)= [ E(t)h(t—t)dt

i.e the response to an arbitrary field E(t) is the convolution
E@h!
= |et’s take the F.T:
X(w) = E(w)h(w) (1.28)
= It doesn’t get any simpler than this

i.e if we know the impulse response h(t), (or the Green’s
function) take FT = h(w) = transfer function = response to any

field E is: X(t) = I[E (0)h(w)] (1.29)
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1.6 Basic Theorems with Fourier Transforms

e) Correlation theorem:

» R differs from ) only by minus sign = similar theorem:

] S[g®h]=GH"
e 3| g(x)h(x —=x)dx]=G(E)H (&)

(1.30)

— Particular case: g = h (auto correlation):

J[g®g]=GG = ‘G‘Z (1.31)

Chapter 1: Math Toolbox
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I

1.6 Basic Theorems with Fourier Transforms

= Eg: F.T of an auto correlation is the power spectrum

= Very important for both time and space fluctuating fields:

= We'll meet them again later!

Chapter 1: Math Toolbox

Fr(t) = T E(t)E(t'-1)dt= auto correlation
_S[F(t)]_i E(w)E (w) = S(w) = power spectrum

(1.32)

(Wiener—Khinchin theorem)
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1.7 Differential equations and Fourier

Transforms
= et f be afunction of time:

f(t)= j F(w)e''dw=3"(F)

(1.33)
-Whatisg_‘; N _
~ = [j F(w)e'dw]=
= j F(a))—[e'“’t]da)—
= j[la)F(a))]e""tda)
=37 [ioF | (1.34)

= S, f > F & aVat—)ia): - Very Useful!

Chapter 1: Math Toolbox
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1.7 Differential equations and Fourier
Transforms

= Great:

“S[F ()] = F (@) S Then

§ (1.34)
Ee= (t)] oF ()
8 8f = loloF (o)
=— F(a))
In others words: S[Zt: ]=1"0"F (o) (1.35)

= Differentiation theorem
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1.7 Differential equations and Fourier
Transforms

= Why 1.35 result is important? Because linear differential
equations are resolved in the frequency domain more easily

= Eg: Recall our e revolving around nucleus under field
illumination E(t)

d d)’igt) +ym —d);it) +ma,*X(t) = qE(t) (1.36)

= The solution is x(t). But we can solve for
x(w)=3[x(t)] and take F* in the end

m
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1.7 Differential equations and Fourier
Transforms

= So, let’'s take F.T of 1.36, using the differentiation
theorem:

M[—o*X(@)] + ioymx(®) + Mo *x(@) = QE ()
X(w)[-me® +ioym+ me ] = qE(w)

Since gq=-€:

e
m E(w) (1.37)

X(@)=—" :
@ —lyo—o,
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1.7 Differential equations and Fourier
Transforms

= Exercise: use PC to take 3™ of Eq. 1.37

= “damped” oscilation,?” = damping factor
I Problem solved
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I

1.8 Refraction and absorption. Dispersion

= Given the electron displacement as a function of
frequency, x(w), we can define the dipole moment:

p=0x

p =—ex

(1.38)

* The dipole moment is a microscopic quantity; we need a

macroscopic counterpart:

Chapter 1: Math Toolbox
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1.8 Refraction and absorption. Dispersion

» P = induced polarization
= N = concentration [m]

= ButP relates to the macroscopic response of the
material vy, I.e. eletric susceptibility:

P=c yE (1.40)
= & = permeability of vacuum
* Finally, y=¢ —1=n°-1 (1.41)
= & = relative permeability
» n = refractive index (Xn KXo X

» If ¥y €R, as opposed to;_( =\ ¥n X»n X |, materialis
KZ31 Z32 Z33) ISOtrODIC
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1.8 Refraction and absorption. Dispersion

= S0, combining 1.39 and 1.40:

~ Ne*/mg,
(0" —@°)—iyw

¥ =n°-1eC (1.42)

* For low-n materials, such as rarefied gases,
n-1=(n-1)(n+1) =2(n-1)
Ne* 1

> nN=1+ .
2me (0" — w,°) —iyw

=n +in (1.43)
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1.8 Refraction and absorption. Dispersion

1 Ne’ o -’
= 2me (0 —@.?) -y’ o’ 4%
9 ) 0 0
~ Ne’ Yo
o ‘me (wz —w 2) . 7/2(02 (1.44b)

—

* n’ = Re(n) = refractive index
* n” =Im(n) = absorption index
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1.8 Refraction and absorption. Dispersion

= Eqg: Plane wave:
E=Ee"“";k =nk,

E — E einkor —
B EO o ikar (n'+in)
o 0

E — Eoe—n koreln K,r
l ) J
| |

absorption refraction

a = n"ko = absorption coefficient
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1.8 Refraction and absorption. Dispersion

—

= Definition: | n'(w) = variation of refractive index with
frequency

= dispersion

n'(w) = absorption line shape

dn o , w
dw >0 dn’_ a0
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1.8 Refraction and absorption. Dispersion

= Note the line shape:

Yo 1 1 1 1
(@ —0))+7'0"  yo (a)—a)O)Za)o]z o w-wo
1+ 1+ °

yo yol 20,

= | orentz function:

~(y_ L 1 i
S(w) = a(1+(a)/a)2j , a = width
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1.8 Refraction and absorption. Dispersion

* Thus the asorption line is a Lorentzian:

. 1 1 .
a(o,w,) = =
Aw —
1+
Aw
Sa(w)]=e " >

®= The Fourier transform of a Lorentzian is an exponential!

Chapter 1: Math Toolbox
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1.8 Refraction and absorption. Dispersion

Connect to quantum mechanics:

= 2 |evel system:

1 > E
0 > E,

= Probability of spontaneous emission/absorption:
= p(t) ~ ettifetime 5 exponential decay

AE=E,-E =h(w—a,)

= Linewidth is Lorentz = natural linewidth

| The model of e on springs was introduced by... Lorentz
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1.9 Maxwell’s Equations

= Fully describe the propagation of EM fields
= Quantify how E and H generate each other

’VXE:—Q5 |
ot

<VxH:§B+T I (1.45a)
ot

Vsz 1

VB =0 \

Chapter 1: Math Toolbox
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1.9 Maxwell’s Equations

= Plus material equations

D=gE+P v
1 =¢E
B=yH+M Vi

—

= Definitions:

E = Eletric field vectors
H = Magnetic field vectors

D = Eletric displacement

B = Magnetic inductance

Chapter 1: Math Toolbox

p=

=
P
M

harge density
E = current density
polarization

magnetlzatlon
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1.9 Maxwell’s Equations

» Let’s combine | and Il (assume no free charge: £=0, j =0)
= Use property: Vx(VxE)=V(VE)-V?E

= Since P=0=>VE=0=|Vx(VxE)=-V’E
Take V x (EqQl):

Vx(VxE)=-Vx (%?] (1.46)

5> vE=2(VxB)=
ot

== (V< ) =
ot (see next slide)

o0, OA
_ a (/’lo E) _
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1.9 Maxwell’s Equations

> VE=L(vxB)-=
ot
o _
= — V)(H =
p (44, )
0 oA
_ a(ﬂog)_

O°E
ot’

0°E
ot

Thus: | V’E — su 0 (1.47)

= Wave Equation

Chapter 1: Math Toolbox

44



ECE 460 — Optical Imaging

1.9 Maxwell’s Equations

Note: .
U =—; V:E; c = speed of light in vacuum
Vv n
| &
N | He
lLlogO

= The wave equation describes the propagation of a atime-

dependent field (eg. pulse) -
= Solution: plane wave: E = Eoe_'(aﬁ‘k'r)
. k:277_a)_nﬂ; k = wave equation

A Vv C

Chapter 1: Math Toolbox
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1.9 Maxwell’s Equations

= Phase of the field:
@ = ot — k-r

(1.48)

= Note: @ = constant describes a surface that moves with a

certain velocity

wt — k.-r= constant

> odt —kdr =0
S aun _o_
d k 7

eq of planes | k

v

(1.49)

wave front

The surface of constant phase is traveling with velocity:

@

P
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1.9 Maxwell’s Equations

= What is the counterpart of the wave equation in the frequency
domain?

@/

= Well, remember a—ﬂa)

= Upon Fourier transforming, Eq. 1.47 becomes:
_ 1 . .
V°E —F(Ia).la))E(a)) =0
— ]
-2 V’E +F(a)2)E(w) =0

)
= Note: k=—
V

2> V’E(w) +k’E(w) =0 (1.50)
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1.9 Maxwell’s Equations
> V’E(w)+k*E(w) =0

= The equation above is the “Helmholtz equation”
= Describes how each frequency w propagates
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